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Tensile strength is one of the most important mechanical properties of structural short fibre

composites, and its prediction is essential for composite design. This paper develops

a strength theory for three-dimensionally oriented short fibre-reinforced composites. The

contribution of direct fibre strengthening to the composite strength is derived using

a maximum-load composite failure criterion. Other strengthening mechanisms, such as

residual thermal stress, matrix work hardening and short fibre dispersion hardening are also

incorporated into the calculation of composite strength. In the derivation of direct fibre

strengthening, the strain and stress of short fibres with different inclination angles were first

derived, and the direct fibre strengthening was calculated from the maximum total load

these short fibres can carry in the composite loading direction.
1. Introduction
Short fibre composites have found extensive applica-
tion in automobiles, sporting goods and cutting tools
[1, 2]. The strength of these composites is one of their
most important properties, and its prediction is essen-
tial in the design of composite parts. Although suc-
cessful theories have been developed to predict the
strength of composites having continuous or discon-
tinuous fibres with unidirectional orientation [3—7],
the strength of three-dimensionally oriented short
fibre composites has not been well studied. The mod-
els of Chen [8] and Halpin and Kardos [9] are among
the earliest works on the strength of short fibre-rein-
forced composites. They approximated the composite
as a stack of unidirectional short fibre-reinforced
laminae bonded together at different angles, which
does not represent the real situation. In addition, these
two theories do not provide any clear relationship
between the composite strength and the properties of
its constituents, because they rely on the experimental
failure strength and strain data of the unidirectional
laminae. Friend [10, 11] proposed an empirical
strength equation for randomly-oriented short fibre-
reinforced metal matrix composites. Owing to its em-
pirical nature, his equation can only be used in par-
ticular alloy matrix composites. For example, it seems
to agree with experimental data for some aluminium
alloy matrix composites, but it cannot explain the high
strength of composites with a pure aluminium matrix.

Fukuda et al. [12] were the first to develop a theory
to predict the strength of composites reinforced with
short fibres oriented randomly, or otherwise, in three
dimensions. However, their theory under-predicts the
contribution of the fibres to the composite strength
and does not fit experimentally observed composite

strength data. Zhu et al. [13, 14] developed theories to
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predict the strength of composites reinforced with
randomly-oriented short fibres. But, the random ori-
entation of short fibres is an idealized situation, which
can seldom be obtained during the fabrication of real
short fibre composites [15]. To predict the strength of
a real short fibre composite, the distribution of fibre
orientation has to be taken into account. The three-
dimensional fibre-orientation distribution can be ob-
tained using image analysis or optical diffraction
methods [16—18], and this makes it possible to assess
the strength of a real short fibre composite.

The objective of this work was to develop a strength
theory for composites reinforced with three-dimen-
sionally oriented short fibres. In this theory, the max-
imum total load is adopted as the composite failure
criterion. Special cases, such as the strengths of com-
posites reinforced with unidirectionally-oriented short
fibres, with two-dimensional randomly-oriented short
fibres, and with three-dimensional randomly-oriented
short fibres, are also presented.

2. Strength theory
The strengthening mechanisms in short fibre-rein-
forced metal- and polymer-matrix composites include
several or all of the following: direct short fibre
strengthening [13], residual thermal stress in fibres
[19, 20], and matrix work hardening induced by short
fibre dispersion [13] and by thermal stress-induced
dislocations [19—23]. Direct short fibre strengthening
is the most significant strengthening mechanism and,
therefore, will be examined first.

2.1. Direct fibre strengthening
The following two assumptions are made for simpli-

city: (1) all fibres in a composite have the same tensile
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strength, and (2) perfect bonding exists between fibres
and the matrix. The first assumption is commonly
used in theories of composite strength and is quite
reasonably adopted in this work.

Fibres with smaller inclination angles from the
loading direction (see Fig. 1) bear larger stresses and
break first during tensile loading. Because the fibre
usually has higher Young’s modulus than the matrix,
these broken short fibres shift their previously carried
load through the matrix to fibres with larger inclina-
tion angles, which have not yet reached their ultimate
strength. Assuming that h

0
is the critical inclination

angle within which every fibre is broken, i.e. fibres with
the inclination angle h

0
bear a stress equal to their

ultimate strength and are just about to break, the total
load carried by the remaining short fibres can be
calculated by integrating the load contributions by all
these fibres. The total load is a function of h

0
and can

be expressed as P (h
0
). The maximum of P (h

0
) can be

considered as the total load that the short fibres carry
at composite failure and can be used to calculate the
direct fibre strengthening.

Before deriving P(h
0
), we need first to calculate the

load carried by a fibre with an inclination angle, h.
Shown in Fig. 1 is a fibre with an inclination angle
04h4p/2 in a composite sample. For simplicity, we
will assume an isotropic Poisson’s ratio, m, for the
composite. Under a total load, P, along the x

3
direc-

tion, the composite strain, e
#
, is produced in the load-

ing direction

e
#
" e

33
(1)

and strains in x
1
and x

2
directions can be calculated as

e
11

" e
22

" !me
33

. (2)

To calculate the strain in a fibre with an inclination
angle h, let us rotate the coordination system around
the x

1
axis clockwise by an angle of h (see Fig. 1). The

transformation matrix A is

A " C
a
11

a
12

a
13

a
21

a
22

a
23

a
31

a
32

a
33

D
" C

1 0 0

0 cos h !sin h
0 sin h cos h D (3)

where a
ij
"cosa

ij
, and a

ij
is the angle between y

i
and

x
j
. The strain in the y

3
direction (along the fibre) can

be calculated as

ey
33

(h) "

3
+
i/1

a
3i

3
+
j/1

a
3j

e
ij

" e
33

(cos2 h!m sin2 h) (4)

Substituting Equation 1 into Equation 4 yields

ey
33

(h) " e
#
(cos2 h!m sin2 h) (5)

By the definition of the critical inclination angle h
0
,

fibres with h
0

will be at their failure strain and stress,
therefore
ey
33

(h
0
) " e

&
" e

#
(cos2 h

0
!m sin2 h

0
) (6)
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Figure 1 Definition of off-axis angle, h.

where e
&
is the fibre failure strain. Substituting Equa-

tion 6 into Equation 5 yields

ey
33

(h) "

e
&
(cos2 h!m sin2 h)

cos2 h
0
!m sin2 h

0

(7)

At h(h
0
, ey

33
(h) calculated with Equation 7 will be

larger than e
&
, and so the fibre is broken and can no

longer carry load, i.e. the stress in a fibre with an
inclination angle h(h

0
is

r(h) " 0 (8)

The strain in fibres with h5h
0

can be considered
equal to ey

33
(h); and the stress in these fibres, therefore,

is

r(h) " E
&
ey
33

(h) (9)

where E
&
is the Young’s modulus of the fibre. Consid-

ering r
&
"E

&
e
&
, where r

&
is the fibre fracture strength,

and substituting Equation 7 into Equation 9, we get

r(h) "

r
&
(cos2 h!m sin2 h)

(cos2 h
0
!m sin2 h

0
)

(10)

Setting r (h)"0 in Equation 10 yields

sin2 h
&
" 1/(1#m) (11)

where h
&

can be calculated from Equation 11. From
Equation 10, it can be seen that r (h) is positive if
h(h

&
, which means tensile stress in the fibre. But, if

h is larger than h
&
, r(h) will be negative due to the

Poisson constriction. Because fibres usually have
higher Young’s modulus than the matrix, fibres should
always have higher resistance to elastic deformation
than the matrix. Therefore, those fibres under the
Poisson constriction will also make a positive contri-
bution towards the composite strength. Based on the

above argument, the absolute value of r(h) should be



used in the calculation of total load carried by fibres
towards the loading direction.

With above discussion, the stress in fibres with
different inclination angles can be summarized as

r(h)"G
0 h(h

0

r
&
(cos2 h!m sin2 h)

cos2 h
0
!m sin2 h

0

h
0
4h(h

&
.

!

r
&
(cos2 h!m sin2 h)

cos2 h
0
!m sin2h

0

h
&
4h4

p
2

(12)

To obtain the total load, P (h), at a specimen cross-
section perpendicular to the loading direction (here-
after referred to as cross-section A, as indicated in
Fig. 2), the orientation-density distribution of fibres
intercepted by the cross-section, n

#
(h), is also needed.

Defining the fibre orientation-density distribution in
the volume of the specimen as nm (h), we can obtain
n
#
(h) from nm (h) by taking into account the following

two factors: first, the probability of a fibre being inter-
cepted by the cross-section A changes with the inclina-
tion angle of the fibre; second, not every fibre intercep-
ted by cross-section A bears load (e.g. when the fibre
end is cut). nm (h) can be expressed as

nm(h) " Nf (h) (13)

where N is the total number of short fibres in the
composite specimen and f (h) is the normalized fibre-
orientation distribution, which can be determined
using image analysis [16, 17].

To calculate n
#
(h), it is also necessary to know the

effective load-carrying length of a short fibre, which
can be expressed as

l
%
" lM!2d (14)

where lM is the average fibre length, which also can be
obtained from image analysis [17], and d is the equiv-
alent non load-carrying length at each end of the short
fibre. A shear-lag-type analysis by Rosen [24] yields
a fibre stress variation near the fibre end as

r
&%

(x) " r
&0

[1!exp(kx)] (15)

where x is the distance from the fibre end, r
&0

is the
stress in the fibre at a large distance from the fibre end,
and

k "

2

dM A
G

.
E
&
B
1@2

A
»1@2

&
1!»1@2

&
B
1@2

(16)

where dM is the average fibre diameter, which is known
before the fabrication of a composite, or can be deter-
mined from image analysis [17], G

.
is the shear

modulus of the matrix, and »
&

is the fibre volume
fraction. d can be calculated from Equation 15 as

d "

1

r
&0
P

=

0

[r
&0
!r

&%
(x)]dx

dM

"

2
[(»~1@2

&
!1)E

&
/G

.
]1@2 (17)
Figure 2 A composite sample and its cross-section.

The projected effective fibre length on the loading
direction can be calculated as

l
1
(h) " l

%
cos h

" [lM!2d]cos h (18)

n
#
(h) can be calculated from nm(h) and l

1
(h) as

n
#
(h)"nm (h)l

1
(h)/¸ (19)

where ¸ is the composite specimen length.
The total number of fibres in a composite specimen,

N, can be calculated by the following equation

N "

¸A»
&

lM aN
&

(20)

where A is the sample cross-sectional area and
aN
&
"pdM 2/4. Substituting Equations 13, 17, 18 and 20

into Equation 19 yields

n
#
(h) "

»
&
A

aN
&
G1!

dM
lM
[(»~1@2

&
!1)E

&
/G

.
]1@2H

] f (h) cos h (21)

Knowing n
#
(h), we can calculate P (h

0
) as

P (h
0
) " P

p/2

h
0

n
#
(h)r (h)aN

&
cos hdh (22)

Substituting Equations 12 and 21 into Equation 22
and integrating yields

P(h
0
) "

»
&
Ar

&
M1!dM [(»~1@2

&
!1)E

&
/G

.
]1@2/lM N

cos2 h
0
!m sin2 h

0

]CP
h
&

h
0

g(h)dh!P
p/2

h
&

g (h)dhD (23)

where
g(h) " f (h)(cos2 h!m sin2 h)cos2 h (24)
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The direct short fibre strengthening can be calculated
as

r &
#
"

[P(h
0
)]

.!9
A

" »
&
r
& G1!

dM
lM

[(»~1@2
&

!1)E
&
/G

.
]1@2H

] C
: h

&
h
0
g (h)dh!:p/2

h
&

g(h)dh

cos2 h
0
!m sin2 h

0
D
.!9

(25)

where r &
#

is the composite strength contributed by
short fibres, i.e. the direct short fibre strengthening.

For composites reinforced with unidirectional short
fibres, f (h) is a delta function at h"0. Substituting
f (h) into Equation 25 yields

r &
#
" »

&
r
& G1!

dM
lM
[(»~1@2

&
!1)E

&
/G

.
]1@2H (26)

For composites reinforced with two-dimensional
randomly-oriented short fibres, the fibre-orientation
distribution can be expressed as

f (h) "

2

p
(27)

Substituting Equation 27 into Equation 25 yields

r &
#
"

»
&
r
&

16p G1!
dM
lM
[(»~1@2

&
!1)E

&
/G

.
]1@2H [B(h

0
)]

.!9

(28)

where

B (h
0
) " C4(3!m) A2h

&
!

p

2
!h

0B#16sin 2 h
&

#2(1#m)sin 4h
&
!8 sin 2h

0

!(1#m)sin 4h
0DN(cos2 h

0
!m sin2 h

0
)

(29)

Calculation shows that for m"0!1.5, B (h
0
)

reaches its maximum at h
0
"0, i.e.

[B(h
0
)]

.!9
" B (0)"4(3!m) A2h

&
!

p

2B
#16 sin 2h

&
#2(1#m)sin 4h

&
(30)

Substituting Equation 11 into Equation 30 yields

[B (h
0
)]

.!9
" 4(3!m) C2 arcsin

1

(1#m)1@2
!

p
2D

#

8m1@2(3#m)

1#m
(31)

Substituting Equation 31 into Equation 28 yields

r &
#
"

»
&
r
&

4p G1!
dM
lM
[»~1@2

&
!1)E

&
/G

.
]1@2H

]G(3!m) C2 arcsin
1

(1#m)1@2
!

p

2D
#

2m1@2(3#m)
(32)
1#m H
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For composites reinforced with three-dimensional
randomly-oriented short fibres, the fibre orientation
distribution can be expressed as [12, 13]

f (h) " sin h (33)

Substituting Equations 24 and 33 into Equation 25
and integrating yields

r &
#
" »

&
r
& G1!

dM
lM
[(»~1@2

&
!1)E

&
/G

.
]1@2H[D(h

0
)]

.!9

(34)

where

D (h
0
) "

m

3
(2 cos3 h

&
!cos3 h

0
)!

1#m

5
(2 cos5 h

&

!cos5 h
0
)/(cos2 h

0
!m sin2 h

0
) (35)

Calculation shows that for m"0!1.5, D(h
0
) reaches

its maximum at h
0
"0, i.e.

[D(h
0
)]

.!9
" D(0)

"

m

3
(2 cos3h

&
!1)

!

1#m

5
(2 cos5h

&
!1) (36)

Substituting Equations 11 and 36 into Equation 34
yields

r &
#
"

»
&
r
&

15 G1!
dM
lM
[»~1@2

&
!1)E

&
/G

.
]1@2H

]
4m5@2#(3!2m) (1#m)3@2

(1#m)3@2
(37)

2.2. Residual thermal stress
Metal-matrix and some polymer-matrix composites
are generally synthesized at high or intermediate tem-
peratures. Ceramic and glass fibres usually have lower
thermal expansion coefficients than metal and poly-
mer matrices, which result in compressive residual
thermal stress in fibres during the cooling from the
composite synthesis temperature. Assuming that the
residual thermal stress in short fibres is r

5
, this stress

changes the apparent fibre strength, and makes a
positive contribution to the tensile strength of a
composite if r

5
(0 (compressive stress) but negative

contribution if r
5
'0 (tensile stress). The contribution

of thermal stress to the tensile strength of a composite,
r 5

#
, can be calculated from Equation 25 as

r 5
#
" »

&
r

5 G1!
dM
lM
[(»~1@2

&
!1)E

&
/G

.
]1@2H

]C
:h

&
h
0
g (h)dh!:p/2

h
&

g(h)dh

cos2 h
0
!m sin2 h

0
D
.!9

(38)

The magnitude of residual thermal stress in short
fibres is sensitive to the composite processing para-
meters, such as the synthesis temperature and the
subsequent cooling rate. It is also related to the fibre

and matrix properties such as their thermal expansion



coefficients and diffusivity. The residual thermal stress
can be measured by X-ray and neutron diffraction
[25].

2.3. Matrix strengthening
For metal-matrix/short-fibre composites, the matrix
may be strengthened by high-density thermal stress-
induced dislocations [26—28]. The thermal stress is
caused by the difference in thermal expansion coeffi-
cients between the matrix and the fibre. The matrix
strengthening by these thermal stress-induced disloca-
tions can be calculated as [13, 26, 27]

*r
.1

" 2aG
.

bq1@2
5

(39)

where a"0.3!0.5 is a constant, G
.

is the shear
modulus of the matrix, b is the Burgers vector and q

5
is

the density of thermal stress-induced dislocations.
Dislocations not caused by thermal stress are not
considered here because their strengthening effect is
usually included in the pure matrix properties during
the calculation of composite strength. Another matrix
strengthening mechanism is short fibre dispersion
hardening, which can be calculated as [13]

*r
.2

" 4G
.

b GdM A
p

»
&
B
1@6

CA
p

»
&
B
1@3

!61@3DH
~1

(40)

2.4. Composite strength calculation
All the strengthening mechanisms discussed above can
be incorporated into the calculation of composite
strength

r
#
" (1!»

&
)r @

.
#r 5

#
#r &

#
(41)

where »
&
is the fibre volume fraction, r @

.
is the matrix

strength at composite failure, r 5
#

is the residual ther-
mal stress strengthening and r &

#
is the direct fibre

strengthening. For metal matrix composites, r @
.

can
be calculated as

r @
.

" r
.
#*r

.1
#*r

.2
(42)

where r
.

is the calculated matrix stress at composite
failure without the consideration of matrix strengthen-
ing by thermal stress-induced dislocations and by dis-
persion hardening.

Substituting Equations 25 and 38 into Equation 41
yields

r
#
" (1!»

&
)r@

.

#»
&
r @

& G1!
dM
lM
[(»~1@2

&
!1)E

&
/G

.
]1@2H

]C
:h

&
h
0
g(h)dh!:p/2

h
&

g(h)dh

cos2h
0
!m sin2h

0
D
.!9

(43)

where

r@
&
" r

&
!r

5
. (44)

Accordingly, the strength of unidirectional short

fibre composites can be derived from Equations 26
and 41 as

r
#
" (1!»

&
)r@

.

#»
&
r @

& G1!
dM
lM
[(»~1@2

&
!1)E

&
/G

.
]1@2H (45)

r
#

for two-dimensional randomly-oriented short fibre
composites can be derived from Equations 32 and 41 as

r
#
" (1!»

&
)r@

.

#

»
&
r @

&
4p G1!

dM
lM
[(»~1@2

&
!1)E

&
/G

.
]1@2H

]C(3!m) C2arcsin
1

(1#m)1@2
!

p

2D
#

2m1@2(3#m)

1#m D (46)

and r
#

for three-dimensional randomly-oriented short
fibre composites can be derived from Equation 37 and
41 as

r
#
" (1!»

&
)r@

.

#

»
&
r@

&
15 G1!

dM
lM
[(»~1@2

&
!1)E

&
/G

.
]1@2H

]
4m5@2#(3!2m)(1#m)3@2

(1#m)3@2
(47)

3. Discussion
The strength theory for three-dimensional short fibre
composites developed in this paper uses the maximum
load criterion for composite failure, which is straight
forward and easy to use. Some of the data needed for
calculating composite strength, such as the fibre ori-
entation-distribution function, f (h), average fibre
length, lM , average fibre diameter, dM , and fibre volume
fraction, »

&
, can either be obtained by image analysis

[17], or are known before the fabrication of a com-
posite; some other data, such as metal matrix disper-
sion hardening, *r

.2
, fibre fracture strength, r

&
,

matrix shear modulus, G
.
, residual thermal stress, r

5
,

and dislocation density, q, may be estimated or experi-
mentally determined. However, r

5
and q might often

need to be estimated because of the experimental
difficulty in their determination.

Rearranging Equation 46, we have the following
equation for calculating the strength of two-dimen-
sional randomly-oriented short fibre composites

r
#
" (1!»

&
)r @

.

#

g»
&
r @

&
4p G(3!m) C2 arcsin

1

(1#m)1@2
!

p

2D
#

2m1@2(3#m)

1#m H (48)

where

g " 1!
dM
lM
[(»~1@2

&
!1)E

&
/G

.
]1@2 (49)

Owing to the lack of experimental data, a compre-

hensive comparison of the present theory with
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experimental results is difficult. Nevertheless, some
validation of the present theory can be made with
limited available experimental data. Tensile strength
data for two-dimensional randomly-oriented E-glass
short fibre-reinforced polyethylene-matrix composites
have been reported by Lees [29]. Using a Poisson’s
ratio of m"0.33, fibre strength r

&
"1.95 GPa [5],

and deriving the g values from Lees’s work [29],
theoretical composite strength can be calculated using
Equation 48 (see Fig. 3 for input data). The results are
compared with the experimental data in Fig. 3. It can
be seen that theoretical composite strength agrees well
with the experimental data.

Experimental data exist for aluminium alloy- and
pure aluminium-matrix composites reinforced with
three-dimensional randomly-oriented alumina short
fibres [10]. For example, an Al—7Si matrix composite
with 20% d-alumina fibres has an experimental
strength of 237 MPa, and a commercially pure alumi-
nium-matrix composite with 25% d-alumina fibres
has an experimental strength of 175 MPa. Friend’s
empirical equation [1, 10]

r &
#
"

»
&
r

&
5 A1!

l
#

2lB (50)

predicts a strength of 227.2 MPa for the Al—7Si matrix
composite, which is reasonably close to the experi-
mental strength of 237 MPa. However, it predicts
a strength of only 120 MPa for the commercially pure
aluminium-matrix composite, which is 31% lower
than the experimental strength. The failure of Friend’s
equation in predicting the strength of pure alumi-
nium-matrix short fibre composite is probably be-
cause it does not consider the matrix work hardening
caused by the additional high-density dislocations in-
duced by thermal stress.

Because the thermal stress-induced dislocation den-
sity data are not available for the above two com-
posites, we cannot directly calculate their strength
using our new theory. However, using the data avail-
able, we can calculate the thermal stress-induced dis-
location density needed for the composites to have
their experimentally observed strengths. Assuming
that the residual compressive thermal stress in the
alumina short fibres is 35 MPa [20], the thermal
stress-induced dislocation density that is needed for
the Al—7Si alloy reinforced with 20% alumina fibres to
have a strength of 237 MPa is 2.78]108 cm~2; and
the thermal stress-induced dislocation density that is
needed for the pure aluminium reinforced with 25%
alumina fibres to have a strength of 175 MPa is
5.9]109 cm~2. It can be seen that the calculated ther-
mal stress-induced dislocation density is higher in the
pure aluminium matrix. This is reasonable, in that the
pure aluminium has lower yielding stress than alumi-
nium alloys, thus making it easier for dislocations to
form and multiply. No experimental data are available
to compare with the above calculated dislocation den-
sity. However, experimental data in a similar com-
posite system have been reported [20, 30]. It is ob-
served that the dislocation density around fibres in

a SiC short fibre-reinforced aluminium alloy matrix
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Figure 3 The theoretical strengths calculated using Equation 48
show good agreement with the experimental strength data of two-
dimensional randomly-oriented E-glass short fibre-reinforced poly-
ethylene-matrix composites.

composite is 109 to 4]1010 cm~2, and in the matrix
away from SiC fibres, the dislocation density is much
lower [20, 30]. The average thermal stress-induced
dislocation density over the entire aluminium alloy
matrix should be much lower than the above observed
values, and our calculated thermal stress-induced dis-
location density values are reasonable.

The present theory can also be used to analyse
contributions of various strengthening mechanisms to
the composite strength. For example, an Al—12Si
matrix composite reinforced with 25% three-dimen-
sional randomly-oriented alumina short fibres has
been reported to have a strength of 162.63 MPa. Cal-
culation using the present theory shows that the con-
tribution of direct fibre strengthening is 83.33 MPa,
which is 51% of the composite strength; the contribu-
tion of residual thermal stress (assuming 35 MPa com-
pressive stress in short fibres) is 1.46 MPa (1% of the
composite strength); the contribution of fibre disper-
sion-hardening is 8.51 MPa (5% of the composite
strength); the contribution of unstrengthened matrix is
63.95 MPa (39% of the composite strength); and the
contribution of thermal stress-induced dislocation
hardening is 5.38 MPa (3% of the composite strength).
This analysis gives us some insight into the composite
strengthening mechanisms and is useful in composite
strength assessment and design.

4. Conclusion
The theory developed in this paper for calculating the
tensile strength of three-dimensional oriented short-
fibre composite improves upon previous strength the-
ories. The present theory can take into account some
material parameters which have not been compre-
hensively considered by previous theories, such as the
short fibre-orientation distribution, matrix shear
modulus, residual thermal stress in short fibres, and
dispersion hardening and thermal stress-induced dis-
location hardening in a metal matrix. It adopts a max-

imum-load composite failure criterion in calculating



the direct contribution of short fibres toward the com-
posite strength, which is straight forward and easy to
use. Comparison with the experimental data of two-
dimensional randomly-oriented short fibre-reinforced
polyethylene-matrix composite shows good agree-
ment. The contribution of various strengthening
mechanisms towards the composite strength can also
be estimated using the present theory, providing useful
information for composite design.
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